CNS cell distribution and axon orientation determine local spinal cord mechanical properties.
نویسندگان
چکیده
Mechanical signaling plays an important role in cell physiology and pathology. Many cell types, including neurons and glial cells, respond to the mechanical properties of their environment. Yet, for spinal cord tissue, data on tissue stiffness are sparse. To investigate the regional and direction-dependent mechanical properties of spinal cord tissue at a spatial resolution relevant to individual cells, we conducted atomic force microscopy (AFM) indentation and tensile measurements on acutely isolated mouse spinal cord tissue sectioned along the three major anatomical planes, and correlated local mechanical properties with the underlying cellular structures. Stiffness maps revealed that gray matter is significantly stiffer than white matter irrespective of directionality (transverse, coronal, and sagittal planes) and force direction (compression or tension) (K(g) = ∼ 130 P(a) vs. K(w) = ∼ 70 Pa); both matters stiffened with increasing strain. When all data were pooled for each plane, gray matter behaved like an isotropic material under compression; however, subregions of the gray matter were rather heterogeneous and anisotropic. For example, in sagittal sections the dorsal horn was significantly stiffer than the ventral horn. In contrast, white matter behaved transversely isotropic, with the elastic stiffness along the craniocaudal (i.e., longitudinal) axis being lower than perpendicular to it. The stiffness distributions we found under compression strongly correlated with the orientation of axons, the areas of cell nuclei, and cellular in plane proximity. Based on these morphological parameters, we developed a phenomenological model to estimate local mechanical properties of central nervous system (CNS) tissue. Our study may thus ultimately help predicting local tissue stiffness, and hence cell behavior in response to mechanical signaling under physiological and pathological conditions, purely based on histological data.
منابع مشابه
Finite Element Modeling of CNS White Matter Kinematics: Use of a 3D RVE to Determine Material Properties
Axonal injury represents a critical target area for the prevention and treatment of traumatic brain and spinal cord injuries. Finite element (FE) models of the head and/or brain are often used to predict brain injury caused by external mechanical loadings, such as explosive waves and direct impact. The accuracy of these numerical models depends on correctly determining the material properties a...
متن کاملA clinically oriented experiment on the effect of mixed culture of neonate spinal cord transplantation on recovery of spinal cord injury
In spinal cord injuries, direct trauma by edges of sublaxated or dislocated vertebrae and indirect ischemia as a result of vascular injury necrotize the neural tissue. After spinal cord injury, tissue loss appears as micro- or macrocavitation. Accumulations of non-neuronal cells substitute spared tissue and halts axon regrowth. Lack of supporting cells (secreting trophic factors and matrix) agg...
متن کاملA clinically oriented experiment on the effect of mixed culture of neonate spinal cord transplantation on recovery of spinal cord injury
In spinal cord injuries, direct trauma by edges of sublaxated or dislocated vertebrae and indirect ischemia as a result of vascular injury necrotize the neural tissue. After spinal cord injury, tissue loss appears as micro- or macrocavitation. Accumulations of non-neuronal cells substitute spared tissue and halts axon regrowth. Lack of supporting cells (secreting trophic factors and matrix) agg...
متن کاملReview of studies on Mechanical Performance of Spinal Cord in Traumatic Injuries
Considering the extent of the disability caused by spinal cord injury and the increasing incidence of it, many attempts have been made to understand how this lesion is repaired. Most of the spinal cord injuries are traumatic injuries. The annual incidence of this damage is estimated between 15-40 cases per million people worldwide. Considering the extent of this incident, the need for study of ...
متن کاملA novel protocol to characterise the mechanical properties of spinal cord tissue and benchmark candidate biomaterials for CNS tissue-engineering
INTRODUCTION: A number of tissueengineered approaches are currently in development to promote repair in the injured spinal cord. In addition, it is widely regarded that the mechanical properties of a tissue have the potential to profoundly affect cell behaviour [1]. As such, to promote optimal cell growth and host-tissue integration in the CNS, biomaterial candidates will need to be designed wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 108 9 شماره
صفحات -
تاریخ انتشار 2015